Course Description

3 Lecture with Lab hours; 3 credits

List prerequisites and co-requisites:
Pre-req: RSP-226
Co-req: RSP 231, 250

Course Description:
This course is designed to provide the students with practices in the art of patient assessment and an understanding of diagnostic and monitoring procedures. The course content includes the collection, analysis, and interpretation of various pulmonary, laboratory, and hemodynamic data. The collected data will then lead the student to consider possible therapeutic interventions and evaluation of patient treatment. Attention is given to those fundamental physiological concepts that provide a foundation for discussion of cardiopulmonary pathophysiology and common cardiopulmonary disorders.
Student Learning Objectives: At the completion of this course, the student will be able to:

- Discuss the rationale for arterial puncture
- Recognize the proper sites and techniques for arterial puncture
- Identify the Henderson-Hasselbach equation and the ratio needed to maintain pH
- Define simple and mixed acid-base abnormalities
- Identify the compensation mechanisms which maintain acid-base status
- Given the results of an ABG, interpret the acid-base and oxygenation status of the patient
- Relate acid-base abnormalities to specific alterations or disease states
- Given appropriate values, calculate the anion gap
- Discuss treatment for various acid-base abnormalities
- Identify essential elements of carbon dioxide monitoring

- Identify the general method of how x-rays are produced
- Identify terminology used in the interpretation of CXRs
- Identify the technique and indications for various CXR views
- Describe CXR markings of various disease patterns
- Recognize the role of CT scans, MRI, and PET scans in the diagnosis of chest diseases
- Discuss the rationale for pulmonary function testing
- Define terms and abbreviations used in pulmonary function testing
- State approximate normal values for lung volumes and capacities
- Identify the relationship of ATPS, BTPS and STPD to pulmonary function testing
- Describe tests of volume, flow, and gas exchange
- Describe special pulmonary function tests
- Identify the theory and methods used to measure FRC and RV
- State normal ranges for pulmonary function test results
- Interpret a PF report to identify patterns of disease
- Recognize the primary abnormalities associated with restrictive and obstructive disease
- Identify standard equipment found in a PFT lab and describe its basic use

- Recognize normal values and significance of hematologic and chemistry lab tests
- Recognize the significance of microbiological lab tests; urinalysis; histologic and cytologic exams

- Identify and define the following:
 - arterial blood pressure; mean arterial pressure; pulse pressure
 - cardiac output; cardiac index
 - pre-load; after-load; contractility; stroke volume; ejection fraction
 - drugs which affect the contractility of the heart (inotropes and chronotropes)
 - central venous pressure
 - pulmonary artery pressure; pulmonary capillary wedge (occluding) pressure
 - pulmonary vascular resistance; systemic vascular resistance
 - arterial-venous oxygen content

- Discuss arterial cannulation with regard to indications, sites; complications; waveforms
- Describe the pulmonary artery catheter
- Given appropriate data, calculate hemodynamic variables
- Recognize variations in measurements associated with ventilation
- Relate alterations in hemodynamic measurements to various disease states
Course Content

This course will be presented and delivered in a formal lecture incorporating student discussions, selected multi-media aids, and a guest speaker. There will be laboratory exercises, NBRC Exam Preparatory Practices, and case study presentations that cover hemodynamic issues in the field of Respiratory Care.

Special Features of the Course (if any)

MoodleRoom is used to enhance the interaction between the professor and the student. The course incorporates a laboratory section that will allow the student to have a hands-on learning experience using equipment relevant to the subject matter. For example, arterial line sampling equipment will be used, and the use of a pulmonary function testing machine to analyze patient diagnostic PFT tests.

Course Texts and/or Other Study Materials

Research, Writing, and Examination Requirement(s)

This course will contain exams and quizzes. Patient case studies are optional and must be obtained from an actual patient encountered in the student's clinical site. Each case study will become the basis for research of an analysis, monitoring technique, or assessment procedure.

Grading Policy

<table>
<thead>
<tr>
<th>Grade determinations</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Exams (5)</td>
<td>50%</td>
</tr>
<tr>
<td>Quizzes (4)</td>
<td>10%</td>
</tr>
<tr>
<td>Laboratory</td>
<td>40%</td>
</tr>
</tbody>
</table>

A Student must show superior work, excel in laboratory skills and contribute positively to class discussions 93 - 100

B+ Student exceeds acceptable standards in classroom work and in practical exercises 88 – 92.9

B Student must show above average work and standard of achievement in classwork and laboratory skills 83 – 87.9

C+ Student must meet and attain the standard of achievement with reasonable theoretical knowledge and laboratory skills 78 – 82.9

F Student fails to meet acceptable standards in classroom or laboratory performance <78

N Incomplete. Failure to submit all reports will result in an incomplete (N) grade.
Attendance Policy:
Attendance and punctuality at all class sessions is required and will be factored into the student's overall final grade. Attendance for classroom lecture and lab will be factored into the total grade for the course. For every absence from classroom lecture or lab, 1 point will be deducted from the total grade for the course. If the student is late by 10 minutes for a lecture or lab, 0.5 points will be deducted from the total grade.

Dress Code: Student's must be in clinical uniform at all times when at the college, and must wear lab coat when in the laboratory and simulation center. Proper shoes must also be worn with uniform, especially in the lab.

Course Policy

Late work or Assignments:
Late work and make-up examinations will be penalized with a grade being no greater than 78%. Late work must be submitted as soon as possible; make-up examinations will be completed during the last week of school at the end of the semester.

Departmental Policy Statements
1. Acceptable quality of work and mature behavior are expected from every student at all times. Students are regarded as professionals and are expected to conduct themselves accordingly.
2. High standards of professional performance demand that students maintain good academic progress throughout their course of study in the program.
3. Students demonstrating chronic tardiness or absenteeism will be placed on academic warning or probation, and may be subjected to termination from the program.
4. Absence from a class during a scheduled exam will be subject to the policy of the instructor for that specific course. If the student is going to miss a scheduled exam it is expected that the student will contact the instructor ahead of time by e-mail or phone to the department office.
5. All students are required to adhere to the policies and procedures of the school as outlined in the college catalogue.
6. Electronic devices are not to be used during this class.
7. Additional departmental policies are located in the Student Policies and Procedures Manual.

Student and Faculty Support Services
1. The program’s faculty maintain office hours for counseling and are available to provide tutorial assistance to students.
2. Students must make appointments in advance to meet with the respective instructors.
3. Students may also obtain assistance from the College Tutoring Center. Appointments must be made in advance through this center.
4. The College has a personal counseling center for those students who may need personal assistance. Appointments are made directly through this center.
5. Any problems, concerns, or questions should be directed to the course instructor or the student’s advisor.

The Sidney Silverman Library is committed to providing a quiet, welcoming, respectful atmosphere conducive to study and research in an environment that is comfortable, clean, and safe. The use of the library will be beneficial for providing resources on researching topic Information, citation styles, finding current articles among many other media services available.